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Abstract
A method is presented to incorporate single observations of lunar occultations of binary stars into the calculation
of their orbits. The standard method of orbit estimation, based on optimisation of a merit function, is designed to
use two-dimensional astrometric measurements obtained observationally. In the present method the merit function
is augmented to include an extra term, containing the one-dimensional solution extracted from the lunar occulta-
tion. Comparison between the two methods is provided, and it is shown that, in some circumstances, the partial
information contained in one-dimensional solutions is enough to estimate orbits very close to those derived from
fully two-dimensional sets of measurements. The method is discussed with an example based on a real binary star.

Resumen
Presentamos un método para utilizar las observaciones de ocultaciones lunares de estrellas dobles por parte de una
única estación en el cálculo de las órbitas de estas estrellas. El método clásico de estimación de órbitas se basa en
la optimización de una función de merito, y se utiliza sobre conjuntos de medidas astrométricas bidimensionales
obtenidas mediante observaciones. El método que se presenta extiende la función de mérito para incluir un
término extra, que contiene la solución unidimensionales obtenida a partir de la ocultación lunar. Se muestra una
comparación entre los dos métodos, y se discute el resultado de que, en algunas circunstancias, la información
parcial contenida en una solución unidimensional puede ser equivalente a la de una medida bidimensional para
estimar la órbita. Se discute el método con un ejemplo de estrella binaria real.

1. Introduction

Lunar occultations have been extensively used since the ’70s of the last century to detect duplicity in
hitherto unknown binary stars [1, 2, 3] (as an example of recent work in binary stars and stellar diameters,
see Ref. [4]). This technique is highly accurate and usually ranked at the same level as interferometric
techniques. Under favourable circumstances projected distances between the components can reach
accuracies of a few milliarcseconds (mas), competing with speckle interferometry using metre-sized
telescopes. This level of accuracy can now be achieved even by dedicated amateur astronomers, which
potentially increases the coverage of the large number of stars occulted by the Moon.
A crucial feature of a lunar occultation observation is that it only provides a one-dimensional astrometric
observation for the binary star, instead of the full two-dimensional position required in orbit optimization
techniques. Indeed, the time interval between the contacts of the two components only sets a constraint on
the two angular coordinates 𝒓 = (𝑥, 𝑦), or (𝜌, PA), of one component relative to the other (𝜌 = |𝒓 | = 𝑟);
see Fig. 1(a). In other words, only a lower bound for the separation between components can be derived,
instead of the true separation 𝜌 and position angle PA [5]. It is only when two or more observations
of the same occultation from sufficiently separated observatories (probing different regions of the lunar
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limb) are combined that a full astrometric solution may be derived. This situation can be achieved by
groups of dedicated amateur observers working in coordination [6, 7], but represents a limitation for the
widespread implementation of the lunar-occultation technique.
The condition of simultaneous observations of the same occultation can be relaxed, and results of two
or more occultations of the same star in different lunations combined, to provide a complete astrometric
solution. The epoch associated to this solution is assigned to the average epoch of observation. This
procedure may be acceptable for long-period binary stars, provided the epochs of observation are not
too distant and their time interval is much smaller that the period. An obvious problem arises in the
case of binary stars of unknown period, or newly discovered binary stars. In this sense, unpaired one-
dimensional solutions are in principle useless, and cannot be used in orbit optimization procedures.
In this paper we review a method of orbit estimation which uses both astrometric (𝑥, 𝑦) positions (two-
dimensional, or 2D astrometric solutions), typically obtained from standard astrometric techniques or
paired lunar occultations, and one-dimensional (1D) solutions from unpaired lunar occultations. The
method has been described before [8, 9, 10], but its use is not widespread. Here we present it in detail.
The method allows to refine and correct previously estimated orbits and, for some stars, estimate new
orbits for the first time. The large database of lunar occultations due to Herald and Gault [11] can
be used to explore forgotten one-dimensional solutions, or to disentangle unduly combined solutions,
which allows to refine a relatively large number of orbits of the Sixth catalog of orbits of visual binary
stars (6Orb) [12].
The present article is a short introduction which intends to show the potential of the method. A more
formal presentation and applications to actual data is left for future publications. The style of the article
is pedagogic and an effort has been made to present the material in a self-contained way.
The article is arranged as follows. In Section 2 we define the geometry of a 1D linear solution, explaining
how it is calculated and the uncertainties associated to the position of the solution. Section 3 is devoted
to the standard method or orbit determination of binary stars, which is based on a least-squares method
containing a set of 2D measurements. An extension of the merit function that includes 1D solutions from
lunar occultations is presented in Section 4, and some general properties of this function are analysed.
Section 5 presents the case of a particular double star where the addition of a 1D solution is seen to be
relevant. Some conclusions are given in Section 6.

Figure 1. (a) Definition of the celestial coordinate system 𝑥𝑦 for double-star work. It is centred at the
primary component A, with axis 𝑥 along the local celestial meridian towards the North Celestial Pole
(NCP), and 𝑦 axis along the local celestial parallel towards the East. The 𝜌 (separation) and PA (position
angle) coordinates are defined. The relation with the rectangular coordinates of the relative position
vector 𝒓 = (𝑥, 𝑦) is given through the usual expressions 𝑥 = 𝜌 cos PA, 𝑦 = 𝜌 sin PA. (b) Geometry
of a lunar occultation. The star traces a chord across the lunar disc, defining two occultation events:
immersion and emersion. 𝒗 is the topocentric apparent velocity of the Moon projected on the plane of the
sky. (c) Local geometry of the immersion of a double star, with the A component having the first contact.
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2. One-dimensional solutions

Figs. 1(b) and (c) show the geometry of a lunar occultation. An immersion event is considered for
the sake of concreteness. Panel (c) shows the specific geometry for a binary star, with components A
(primary) and B (secondary). We assume A is occulted first but this assumption can be generalised easily
(see later). The projected lunar limb is supposed to be a straight line (straight-limb approximation). The
calculation of the straight line and the limitations of this approximation are discussed later. Note that
the limb normal is at an angle 𝛾′ with respect to the NCP, but that the apparent velocity of the Moon
(given by the angle 𝛽) is along a direction different (in general) from that of the limb normal. Therefore,
by measuring the time interval 𝜏 between the two events, we only have information on the component
of the separation between components along the limb normal. With the help of Fig. 1(c), it is easy to
derive the following equation:

𝒓 · 𝒏̂ = 𝑣𝜏 𝜷̂ · 𝒏̂, (𝒓 − 𝑣𝜏 𝜷̂) · 𝒏̂ = 0, (2.1)

where 𝒏̂ = (cos 𝛾′, sin 𝛾′) is the limb normal at the contact point of A, 𝑣 the topocentric apparent
velocity of the Moon, and 𝜷̂ = (cos 𝛽, sin 𝛽). Note that 𝒓 · 𝒏̂ is the projection of the star vector separation
𝒓 along the local limb normal 𝒏̂. This is made to be equal to the projection of the displacement of the
Moon on the same direction within the time interval 𝜏, i.e. 𝑣𝜏 𝜷̂ · 𝒏̂. Also, Eqn. (2.1) shows that the
vector 𝒓 − 𝑣𝜏 𝜷̂ points along the limb, and is therefore orthogonal to 𝒏̂.
One crucial point is how 𝛾′, or 𝒏̂ for that matter, is calculated. Due to the roughness of the lunar limb
and the uncertainty in the current positions of the two stars, it is not possible to calculate the value of 𝛾′
rigorously. Therefore some approximations, discussed in the next paragraph, have to be made. Note that
Eqn. (2.1) represents a straight line projected on the sky, since 𝑣 and 𝛽 can be extracted from the lunar
ephemerides, and 𝛾′ can be approximated [13]. It gives a linear relation between the two components of
the relative position vector 𝒓, but not the values of the coordinates separately. Eqn. (2.1) will be called
1D solution, as opposed to the determination of the full vector 𝒓 (2D solution) achieved by application
of the standard astrometric methods. Combination of two different observations,

𝒓 · 𝒏̂1 = 𝑣1𝜏1 𝜷̂1 · 𝒏̂1, 𝒓 · 𝒏̂2 = 𝑣2𝜏2 𝜷̂2 · 𝒏̂2, (2.2)

corresponding to two observations of the same occultation from two stations, leads to a unique solution
for 𝒓. When 𝑀 > 2 observations are available, a least-square method can be applied:

𝑆(𝒓) =
𝑀∑︁
𝑗=1

[
(𝒓 − 𝑣 𝑗𝜏𝑗 𝜷̂ 𝑗 ) · 𝒏̂ 𝑗

𝜎𝑗

]2

−→ min. w.r.t. 𝒓. (2.3)

Eqn. (2.3) expresses a minimum condition over the sum of squares of the distances along the limb
normals, extended over all observations, and leads to a 2 × 2 linear system of equations that can be
solved analytically. 𝜎𝑗 is an uncertainty in the location of the straight line along the limb normals. When
𝑀 = 2 both Eqns. (2.2) and (2.3) can be seen to lead to the same solution. A key step in the above
calculation is how to estimate 𝛾′ and 𝜎. Fig. 2 describes the process of how an average straight limb can
be obtained by assuming the limb profile is rough at the scale of the (expected) separation between the
two components 𝜌. Since the celestial coordinates of the two stars are not known in advance (otherwise
the problem would be irrelevant), we need to have an estimate of the celestial position of A to be able
to estimate the contact point on the lunar limb. Note that this problem would not be relevant if the limb
were truly straight within some reasonable interval, as in panel (a). However, in the general case the
limb will not be strictly linear.
The natural choice for the estimated coordinates is the catalogue coordinates (Gaia or otherwise),
advanced to the epoch of observation, assuming a linear proper motion of the star. But this is only an
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Figure 2. Construction of the one-dimension solution for the lunar limb profile.

approximation, as the internal motions of the binary star will cause the stars to be displaced from their
catalogue positions. Using the estimated coordinates for A, and the estimated separation between the
components, we can create an estimated landscape for the relevant lunar profile. This is shown in Fig.
2. The construction of an ‘effectively linear’ limb profile is based on the following argument. Assume
the estimated coordinates for A lead to the contact point indicated by P in panel (b). The constraint
imposed by the observation time interval 𝜏 implies that the B component will necessarily be at some
point on a shifted limb (drawn in gray), which results by displacing the real limb a distance 𝑣𝜏 in the
direction of the apparent lunar motion. The resulting ‘rough’ 1D solution is identical to the actual limb,
but shifted. Now, the uncertainty in the position of A forces us to probe other possible contact points,
such as P′ in panel (c), finally resulting in a manifold of possible ‘rough’ 1D solutions, panel (d). The
position of A should be displaced along the limb within some distance Δ, panel (b), which reflects the
expected accuracy in the position of A. We can now use the set of shifted limbs to obtain both 𝒂 and
the uncertainty 𝜎. In essence this procedure amounts to making a simple linear regression of the real
limb within the interval Δ.
Let the resulting straight line be 𝑐1𝑥 + 𝑐2𝑦 = 𝑑. This can be written as

𝒂 · 𝒓 = 1, 𝒂 = (𝑎𝑥 , 𝑎𝑦), 𝑎𝑥 =
𝑐1
𝑑
, 𝑎𝑦 =

𝑐2
𝑑
. (2.4)

This representation is not numerically the most general, as it does not contain straight lines that pass
through the origin. But such solutions are not physically admissible, as they correspond to situations
where the two components are occulted at the same time (within observational accuracy). In practice
a single vector 𝒂 can represent acceptable solutions of arbitrary observational accuracy. Once 𝒂 and 𝜎

are determined, we obtain 𝒏̂ = 𝒂/𝑎, since 𝒂 is a vector normal to the straight line.
In many cases the separation 𝜌 will be so small compared with the typical length scales over which the
lunar limb profile changes that the straight-limb approximation will be highly accurate. In some cases
this will not be so, but the uncertainty will be controlled by the value of 𝜎.
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3. Standard orbit determination

In the standard method of binary-star orbit determination we have a set of 2D measurements, {𝒓𝑖},
𝑖 = 1, · · · , 𝑁 , at epochs {𝑡𝑖}, with uncertainties 𝜎𝑖 (assuming both axes to be equivalent), and an orbit
has to be determined. Let {𝑃,𝑇, 𝑒, 𝑎, 𝑖,Ω, 𝜔} be a set of orbital elements for the star (the Campbell
elements), which we wish to determine. We remind the reader about the meaning of the elements [5]: 𝑃
is the orbital period; 𝑇 is the epoch of periastron; 𝑒 is the eccentricity; 𝑎 is the semimajor axis; 𝑖 is the
inclination; Ω is the longitude of the ascending node; and 𝜔 is the argument of periastron.
Given values for the orbital elements, the trajectory is given by a Keplerian function 𝒓 =

𝒓 (𝑃,𝑇, 𝑒, 𝑎, 𝑖,Ω, 𝜔; 𝑡) for epoch 𝑡. A merit function is defined as

𝑆(𝑃,𝑇, 𝑒, 𝑎, 𝑖,Ω, 𝜔) =
𝑁∑︁
𝑖=1

���� 𝒓𝑖 − 𝒓 (𝑃,𝑇, 𝑒, 𝑎, 𝑖,Ω, 𝜔; 𝑡𝑖)
𝜎𝑖

����2 , (3.1)

which is minimised with respect to the seven orbital elements. It is convenient to use the Thiele-Innes
elements, 𝐴, 𝐹, 𝐵 and 𝐺, instead of the Campbell elements 𝑎, 𝑖,Ω, 𝜔. The relation between the two sets
of elements is given by

𝐴 = 𝑎(cos𝜔 cosΩ − sin𝜔 sinΩ cos 𝑖)
𝐵 = 𝑎(cos𝜔 sinΩ + sin𝜔 cosΩ cos 𝑖)
𝐹 = −𝑎(sin𝜔 cosΩ + cos𝜔 sinΩ cos 𝑖)
𝐺 = −𝑎(sin𝜔 sinΩ − cos𝜔 cosΩ cos 𝑖). (3.2)

As a shorthand notation, let us define 𝜂 ≡ {𝑃,𝑇, 𝑒, 𝐴, 𝐹, 𝐵, 𝐺}, and the matrix

𝚯 =

(
𝐴 𝐹

𝐵 𝐺

)
. (3.3)

Then 𝒓 (𝜂; 𝑡) = 𝚯 · 𝒓o (𝑡), where 𝒓o = (𝑥o, 𝑦o) is the position in the orbital plane. This is calculated
as 𝑥o = cos𝜓 − 𝑒, 𝑦o =

√
1 − 𝑒2 sin𝜓, with 𝜓 the eccentric anomaly, solution to the Kepler equation

𝜓 = 𝑚 + 𝑒 sin𝜓, and 𝑚 = 2𝜋(𝑡 − 𝑇)/𝑃 the mean anomaly for the epoch of calculation 𝑡. Eqn. (3.1) can
be written as a quadratic form in 𝜽 ,

𝑆({𝑃,𝑇, 𝑒}; 𝜽) = 1
2

𝑁∑︁
𝑖=1

𝜽 · 𝑴 · 𝜽 − 𝒏 · 𝜽 + 𝑛0, (3.4)

where 𝜽 = (𝐴, 𝐹, 𝐵, 𝐺), 𝑴 is a 4 × 4 matrix,

𝑴 =

(
𝚲 0

0 𝚲

)
, 𝚲 =

𝑁∑︁
𝑖=1

𝒓𝑜𝑖 𝒓𝑜𝑖

𝜎2
𝑖

, (3.5)

and

𝒏 = (𝜇11, 𝜇12, 𝜇21, 𝜇22), 𝝁 =

𝑁∑︁
𝑖=1

𝒓o𝑖 𝒓𝑖

𝜎2
𝑖

, 𝑛0 =
1
2

𝑁∑︁
𝑖=1

|𝒓𝑖 |2

𝜎2
𝑖

. (3.6)

Note that 𝝁 is also a matrix, and its definition contains sums of dyadic products.
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3.1. Minimization and estimation of orbital parameters

Eqn. (3.4) naturally leads to a minimization strategy where 𝑆 is first minimised with respect to 𝜽 , for
fixed values of {𝑃,𝑇, 𝑒}:

∇𝜽𝑆 = 0 → 𝑴 · 𝜽 = 𝒏, 𝜽 = 𝜽 (𝑃,𝑇, 𝑒) = 𝑴−1 · 𝒏, (3.7)

which leads to an effective function,

𝑆(𝑃,𝑇, 𝑒) ≡ 𝑆(𝑃,𝑇, 𝑒; {𝒄(𝑃,𝑇, 𝑒)}), (3.8)

with 𝜽 (𝑃,𝑇, 𝑒) given by Eqn. (3.7). The function 𝑆(𝑃,𝑇, 𝑒) can be minimised by various methods. The
most popular method is the search-grid method of Hartkopf et al. [14], but Monte Carlo methods are
also routinely used. In the search-grid method, the function 𝑆 is evaluated on a small grid about a point
with initial values (𝑃,𝑇, 𝑒), and the minimum detected. A new grid is defined about the minimum, and
the process Here we use a slightly different approach, which consists of the following. For fixed value
of 𝑒 in some interval [𝑒1, 𝑒2] (where 𝑒1 ∼ 0 but finite, and 𝑒2 ∼ 1 but 𝑒2 < 1), we calculate 𝑆 in the
plane (𝑃,𝑇), using the relation 𝑆(𝑃,𝑇, 𝑒) = 𝑆(𝑃,𝑇 + 𝑃, 𝑒) and 𝑃 ∈ [𝑃1, 𝑃2], 𝑇 ∈ [𝑇1, 𝑇1 + 𝑃]. Values
for 𝑃1, 𝑃2 and 𝑇1 are set by a trial and error process. The minimum of 𝑆 with respect to 𝑃,𝑇 can be
calculated approximately using a grid, and then refined using a steepest descent method. This is done
for all 𝑒 in the above interval, and a one-dimensional minimisation is then performed with respect to 𝑒.

3.2. Estimation of uncertainties

As in all statistical methods, uncertainties in the calculated values must be provided. A look at the
quadratic equation given by Eqn. (3.4) suggests that the inverse of the 𝑴 matrix provides a covariance
matrix,𝑪 = 𝑴−1. The square of the diagonal elements of𝑪 give estimates for the Thiele-Innes elements:

𝜎𝐴 =
√︁
𝐶11, 𝜎𝐹 =

√︁
𝐶22, 𝜎𝐵 =

√︁
𝐶33, 𝜎𝐺 =

√︁
𝐶44. (3.9)

Uncertanties in the angular Campbell elements follow from the latter using Eqns. (3.2). Uncertainties
for the remaining elements, 𝑃,𝑇, 𝑒, can be obtained from the grid step [14]. A more formal method is to
apply error propagation using 𝜽 = 𝑴−1 · 𝒏. However, this method implicitely assumes that the function
𝑆 is quadratic in all the elements, but this is generally not true. Alternatively, in these cases obe can
apply the method based on confidence levels [15]. Uncertainties may vary depending on the method
used. In the following we use the method based on the grid size.

4. Orbit determination using 1D solutions

In the extended method we add the contributions from the possibly multiple 1D solutions at epoch 𝑡 𝑗 .
We define the augmented function

𝑆({𝑃,𝑇, 𝑒}; 𝜽) =
𝑁∑︁
𝑖=1

����� 𝒓𝑖 − 𝒓 (o)
𝑖

𝜎𝑖

�����2 + 𝑤

𝑀∑︁
𝑗=1

(
𝒂 𝑗 · 𝒓 𝑗 − 1

𝜎′
𝑗

)2

, (4.1)

where 𝑗 runs over the 𝑀 1D (straight-line) solutions at times 𝜏𝑗 , and 𝜎′
𝑗
= 𝜎𝑗/𝑎. The extra term depends

functionally on {𝑃,𝑇, 𝑒}, 𝜽 through 𝒓. 𝑤 is the relative weight between the 2D and 1D solutions (in the
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following we take 𝑤 = 1). Eqn. (4.1) can also be written as (3.4), with

𝑴 =

(
𝚲 +𝚷11 𝚷12

𝚷21 𝚲 +𝚷22

)
, 𝚷𝑙𝑚 =

𝑀∑︁
𝑗=1

𝑎
(𝑙)
𝑗
𝑟
(𝑚)
o 𝑗 𝒂 𝑗 𝒓o 𝑗

𝜎′2
𝑗

, (4.2)

and

𝒏 = (𝜇11 + 𝜆11, 𝜇12 + 𝜆12, 𝜇21 + 𝜆21, 𝜇22 + 𝜆22), 𝜆 =

𝑀∑︁
𝑗=1

𝒂 𝑗 𝒓o 𝑗

𝜎′2
𝑗

. (4.3)

In Eqn. (4.2) components of 𝒂 𝑗 and 𝒓o 𝑗 are denoted by superscripts. In problems without 1D solutions,
we can take 𝑎 𝑗 = 0, and the standard case is recovered. The solution 𝜽 is also given by a linear system
of equations, as in the standard case.
Because of the presence of 𝚷𝑖 𝑗 , the elements of 𝜽 are not decoupled, and the full 4 × 4 linear system
has to be solved, which can be done analytically (the expressions are too long to be written here). Gauss
elimination can also be used to obtain the solution. Once this is calculated, the function 𝑆 is minimised
in a nested iteration, as in the previous section. This is what we call method I.
An alternative procedure, method II, is to minimise only the first term in Eqn. (4.1) for each set (𝑃,𝑇, 𝑒),
as in the standard procedure, to obtain the Thiele-Innes elements, and then minimise the whole function
𝑆 in a nested iterative process, using the same strategy as before. This amounts to using (3.1) instead
of (4.1) to calculate 𝜽 . Both these methods lead to the same solution, but the first should be preferred
when the arc of measurements is very short. Uncertainties in the elements can be estimated as in the
standard method.

Figure 3. 1D and 2D measurements and orbits fitted to different sets of data for WDS
J04422+2257Aa,Ab. 2D measurements are taken from the Fourth Interferometric Catalog [17]. Dotted
red lines are the apsis lines. (a) Full set of 36 2D measurements, covering an arc close to 180◦, and fitted
orbit, Set 2. (b) A subset of 25 2D measurements, covering an arc about 90◦ wide, and the 1D solution
obtained from a lunar occultation [7] (J2022.0), with label a. The orbits fitted to Sets 3 and 4 are shown.
The green filled circle is the position along the optimised orbit using Set 4 at J2022.0. (c) A subset of
15 2D measurements, covering ∼ 50◦, and two 1D solutions: a is the same solution as in (b), while b is
a fictitious solution that goes through a position obtained from the best orbit (Set 2) at J2033.0. Orbits
fitted to Sets 6, 7 and 8 are shown. Blue circles indicate the positions along the optimised orbit (Set 8)
at epochs J2022.0 and J2033.0.
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5. An example: WDS J04422+2257Aa,Ab

We take the binary star WDS J04422+2257Aa,Ab as an example. Discovered in 1980 and last observed
in 2007, a grade-3 orbit was computed for this star, based on 36 observations, by Cvetković and
Novaković [16] in 2010. The orbit has been recalculated, and Fig. 3(a) shows the projected orbit, with
the 36 measurements included. Table 1 summarises the values of the orbital elements in the different
conditions. Set 1 corresponds to the published orbit, while Set 2 is our recalculated orbit (deduced from
the same dataset, but using uncertainties which may be slightly different from the ones used in [16]).
This orbit will be called reference orbit in the following.
As a test, we reproduced a situation with a fewer number of observations by limiting the number of
measurements to 25, as drawn in Fig. 3(b). The resulting orbit is represented in blue. Set 3 in Table
1 pertains to this case. This orbit is quite far from the reference orbit (in black), since the first 25
measurements cover a short arc (approximately 90◦), while the full set of data covers approximately
180◦.
Also represented in Fig. 3(b) is the orbit resulting by adding the 1D solution from the results of a lunar
occultation occurred on 17 December 2021 [7] to the set of 25 measurements. We can see that it is
almost indistinguishable from the reference orbit (see Set 4 in Table 1): despite containing only partial
astrometric information, the 1D solution correctly constraints the orbit. We can see that Sets 3 & 4 are
practically identical, but Set 4 spans an arc of 2D measurements which is half that used in Set 3.
To understand this result and why the 1D lunar limb represents a strong constraint, let us consider
method II. At each step of the iterative process one first generates an orbit from the 2D measurements
using 𝑆 as the objecive function. The 𝑆 function is then evaluated, and the trial values for {𝑃,𝑇, 𝑒}
are changed along a direction towards the minimum. Note that 𝑆 is sensitive to the distance from the
predicted orbital positions at 𝜏𝑗 to the straight lines given by 𝒂 𝑗 · 𝒓 𝑗 = 1. Obviously the process will tend
to minimise these distances in conjunction with the distances from the orbit to the 2D measurements.
Unless the trial orbit is very far from the optimal one, the process should be smoothly driven to the
correct minimum and therefore to the optimal orbital elements.
Now we show that, in favourable cases, 1D solutions may lead to orbits of similar quality as 2D
measurements. Consider the same example as before (Set 4 in Table 1), but now we replace the 1D
solution of Fig. 3(b) by the 2D position indicated by the green circle. After orbit optimisation with the
25 + 1 2D measurements (25 real and 1 fictitious), we arrive at Set 5, which is very close to Set 4. In
this case the 1D solution is as accurate as the 2D solution as regards orbit optimisation!
Fig. 3(c) shows a more strict case, where only 15 2D measurements, spanning an arc ∼ 50◦ long,
are used. The orbit that results from these 2D solutions is quite far from optimal, Set 6 in Table 1.
The orbit improves when the 1D solution is considered, Set 7. By including a second 1D solution (a
fictitious observation chosen such that the limb intersects the reference orbit precisely at the orbital point
associated to the epoch of observation, J2033.0), conveniently located in a region void of measurements,
the resulting orbit, Set 8, is reasonably close to the reference orbit. Again, 1D solutions consistently
improve orbits based on short arcs.
As an additional check, we consider the full set of 2D observations, and compare cases where only one
or the two 1D solutions are added. In both cases the improvement is not substantial (see Fig. 3(d) and
Table 1). This means that the published orbit is quite robust (and perhaps would deserve a lower grade).
Needless to say, there are situations where 1D solutions may not lead to unique or reasonable orbits.
Spurious solutions will result when combining short arcs and particular configurations of the straight
line. In these cases, solutions should always be analysed for possible erroneous orbits, and the initial
guess for the orbit should be chosen using a conditioning strategy based e.g. on Monte Carlo sampling.
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Table 1. Orbital elements, 𝑃,𝑇, 𝑒, 𝑎, 𝐴, 𝐹, 𝐵 and 𝐺 that result from optimisations made with different
sets of data for WDS J04422+2257Aa,Ab. The combination of 2D and 1D solutions for each set is given
in Column ‘Data’. Set 1 corresponds to the published orbit [16]. In all cases starting values for the
search grid method were 𝑃 = 60 y, 𝑇 =J2050.0, and 𝑒 = 0.2.

Set Data 𝑷 𝑻 𝒆 𝒂 A F (′′) B G O−C∗

2D+1D (y) (y) (′′) (′′) (′′) (′′) (′′) (′′)
1∗∗ 36 + 0 57.896 2037.956 0.357 0.284 −0.2157 −0.1293 −0.1841 +0.1335 −

2 36 + 0 57.219 2037.094 0.365 0.287 −0.2101 −0.1940 −0.1340 +0.1233 0.011
±0.005 ±0.005 ±0.0005 ±0.002 ±0.0025 ±0.0026 ±0.0025 ±0.0026

3 25 + 0 85.344 2066.594 0.484 0.368 −0.3292 −0.1648 −0.1024 0.1938 0.016
±0.005 ±0.005 ±0.0005 ±0.007 ±0.0067 ±0.0046 ±0.0067 ±0.0046

4 25 + 1 58.734 2038.547 0.370 0.288 −0.2112 −0.1943 −0.1342 0.1239 0.011
±0.005 ±0.005 ±0.0005 ±0.008 ±0.0060 ±0.0030 ±0.0060 ±0.0030

5† 26 + 0 58.141 2038.094 0.352 0.283 −0.2136 −0.1844 −0.1269 0.1311 0.017
±0.005 ±0.005 ±0.0005 ±0.007 ±0.0055 ±0.0031 ±0.0055 ±0.0031

6 15 + 0 35.953 2095.562 0.735 0.403 −0.0616 0.3521 0.1541 −0.1531 0.153
±0.005 ±0.005 ±0.0005 ±0.007 ±0.0129 ±0.0122 ±0.0129 ±0.0122

7 15 + 1 79.969 2065.953 0.482 0.389 −0.3611 0.1110 0.1334 0.1720 0.049
±0.005 ±0.005 ±0.0005 ±0.006 ±0.0107 ±0.0156 ±0.0107 ±0.0156

8+ 15 + 2 57.234 2035.859 0.387 0.2754 −0.1534 −0.2257 −0.1737 0.0852 0.015
±0.005 ±0.005 ±0.0005 ±0.0215 ±0.0160 ±0.0068 ±0.0160 ±0.0068

∗ Per point. Includes all 36 measurements.
∗∗ Published orbit [16].
† One 2D point, at J2022.0, is a fictitious measurement.
+ One of the two 1D solutions, at J2033.0, is a fictitious measurement.

6. Conclusions

One-dimensional solutions for the relative astrometry of a binary star may be incorporated into stan-
dard procedures of orbit optimisation. In some cases the contribution from these solutions may be as
accurate as those from standard two-dimensional astronometry. As noted by Mason [8], 1D solutions
may be particularly relevant for epochs close to periastron, where the relative positions are changing
more rapidly. Because of their relevance for binary-star astrometry, we urge the amateur community to
undertake this type of measurements and to report the results [7].
We are presently analysing a large number of binary stars for which one or more 1D solutions are avail-
able, in an effort to improve or recalculate their orbital elements using the information obtained from
lunar occultations. Also, an ongoing investigation, based on synthetic orbits, is exploring the landscape
of possible situations and their relevance for orbit estimation. These results will be published elsewhere.
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